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Quantum morphogenesis: A variation on Thom’s catastrophe theory
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Noncommutative propositions are characteristic of both quantum and nonquantum~sociological, biological,
and psychological! situations. In a Hilbert space model, states, understood as correlations between all the
possible propositions, are represented by density matrices. If systems in question interact via feedback with
environment, their dynamics is nonlinear. Nonlinear evolutions of density matrices lead to the phenomenon of
morphogenesis that may occur in noncommutative systems. Several explicit exactly solvable models are
presented, including ‘‘birth and death of an organism’’ and ‘‘development of complementary properties.’’
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I. INTRODUCTION

Thom’s catastrophe theory is an attempt at finding a u
versal mathematical treatment of morphogenesis@1#, under-
stood as a temporally stable change of form of a system.
theory works at a meta level and does not crucially dep
on details of interactions that form a concrete ecosyst
organism, or society. In order to achieve this goal, the an
sis must deal with qualitative classes of objects and ha
possess certain universality properties.

The purpose of the present work is similar. We define
system by an abstract space of states. The set of proposi
that define properties of the system is, in general, n
Boolean. In particular, propositions corresponding to
same property may not be simultaneously measurable if c
sidered at different times. Also, at the same time there m
exist sets of mutually inconsistent propositions.

Although formal logical systems of this type are we
known from quantum mechanics@2#, it is also known that the
scope of applications of non-Boolean logic is much wid
@3–7#. Practically, any situation involvingcontextsbelongs
to this category. Formally, a context means that a log
value associated with a given proposition depends on
history of the system. In particular, the order in which qu
tions are asked is not irrelevant.

The systems we shall consider are probabilistic. The m
phogenesis will be described in terms of probabilities or
certainties associated with given sets of propositions.
contextual nature of the propositions will require a repres
tation of probabilities different from the Kolmogorovia
framework@8# of sets and commuting projectors~character-
istic functions!. Propositions will be represented by proje
tors on subspaces of a Hilbert space.

Another element we regard as crucial is afeedback. Feed-
back means that the system under consideration inter
with some environment. The environment is influenced
the system and the system reacts to the changes in the
ronment. Even the simplest models of such interactions l
effectively to nonlinear evolution equations@9#. Therefore,
instead of modeling the interaction we will say that the fee
back is present if the dynamics of the system is nonline
with some restrictions on the form of nonlinearity.
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A system interacting with the environment is statistica
characterized by nontrivial conditional probabilities. In th
language of non-Kolmogorovian probability calculus, th
implies that states are not given by simple tensor product
states. On the other hand, a simple tensor describes a
involving no correlations and hence neither interactions
feedback.

As a consequence, the nonlinearity representing feedb
should disappear if the system in question and the envir
ment are in a product state. The latter property may be u
to reduce the class of admissible nonlinear evolutions. In
Hilbert-space language, the state of a subsystem is re
sented by a statistical operatorr that is not a projector~i.e.,
r2Þr) whenever the state of the composite syst
(subsystem1environment) is not a product state. Therefo
the conditionr25r characterizes states of subsystems wh
do not interact with the environment. This leads to the f
lowing restriction: The dynamics ofr is linear if r25r.

The latter condition is still not restrictive enough since
can be satisfied by both dissipative and nondissipative e
lutions @10#. We shall restrict the dynamics to Hamiltonia
systems. In the present paper the Hamiltonian functions
be time independent, which roughly means that the form
the feedback does not change in time.

Finally, we want to make the discussionuniversal. By this
we mean two things:~1! The Hamiltonian functions should
be typical of a very large class of dynamical systems, and~2!
the results should not crucially depend on the form of a fe
back, but more on the very fact that the feedback is pres

The most universal Hamiltonian functions seem to cor
spond to Hamiltonians with equally spaced spectra or, m
precisely, whose spectra contain equally spaced subsets
class of Hamiltonians includes harmonic oscillators, qu
tum fields, spin systems, ensembles of identical objects,
many others. Quite recently, the role of Hamiltonians of t
harmonic oscillator type was shown to be relevant to
dynamics of a stock market@11#.

A linear Hamiltonian dynamics ofr is given by the von
Neumann equation

i ṙ5v̂r, ~1!
©2003 The American Physical Society26-1
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with v̂r5@H,r#. Equation~1! may also be regarded as a
abstract representation of a harmonic oscillator. An oscilla
occurring in many applications in biological sciences
however, the nonlinear oscillator@12#, whose abstract ver
sion reads

i ṙ5(
j

v̂ j f j~r!. ~2!

The ‘‘generic’’ equation, which is the basis of our analysis,
therefore the von Neumann–type equation

i ṙ5(
j

@H j , f j~r!#. ~3!

The indexj is responsible for the possibility of having di
ferent parts of the system, which differently interact via t
feedback. For the sake of simplicity, in this paper we rest
the analysis to only oneH and a singlef:

i ṙ5@H, f ~r!#. ~4!

The only assumptions we make aboutf are that this is a
standard operator function in the sense accepted in spe
theory of self-adjoint operators, and that it should be lin
whenever there is no feedback. A nontrivial example satis
ing all the above requirements is an arbitrary polynomial

f ~r!5a01a1r1•••1anrn. ~5!

II. RELATION TO REACTION-DIFFUSION MODELS

The typical reaction-diffusion models are of the for
@13,14#

iẊ5v̂X1v̂1f ~X!, ~6!

wherev̂5A¹2, andA andv̂1 are, in general complex, ma
trices andX, f (X) are vectors. Particular cases of Eq.~6! are
the Swift-Hohenberg,l2v, and Ginzburg-Landau model
@15–18#.

To illustrate what kind of models we arrive at, consid
the quadratic nonlinearityf (r)5r2 and the harmonic oscil
lator HamiltonianH5(n50

` nun&^nu. In the simplest case o
a one-dimensional harmonic oscillator, our nonlinear v
Neumann equationi ṙ5@H,r2# reads in position space,

i ṙ~x,y!5~2]x
21]y

21x22y2!E dzr~x,z!r~z,y!. ~7!

So even the simplest cases lead to rather complic
integro-partial-differential nonlinear equations. Th
no-feedback condition implies r(x,y)5c(x)c̄(y),
*dzc̄(z)c(z)51, and the equation can be separated yie
ing the Schro¨dinger equation

i ċ~x!5~2]x
21x21const!c~x!. ~8!
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The Schro¨dinger equation may be regarded as a diffus
equation in complex time. Similarly, the nonlinear von Ne
mann equations can be mapped into diffusion type equat
by replacingt by i t , or by admitting non-HermitianH j . The
Darboux techniques we are using are not restricted to H
mitian operators.

The self-switching solutions discussed below correspo
to certainr(x,y)Þc(x)c̄(y). The ‘‘patterns’’ we find in ex-
plicit examples are illustrated by the probability densities

pt,x5^xur tux&5r t~x,x!. ~9!

III. ENTITIES IN ENVIRONMENTS

Consider two Hilbert spaces:HE describing an ‘‘environ-
ment’’ and spanned by vectorsuE&, and He describing an
‘‘entity’’ and spanned by vectorsue&. The composite system
‘‘environment1entity’’ is represented by either a state vect

uC&5(
E,e

CEeuE,e&5(
E,e

CEeuE& ^ ue& ~10!

or by a density matrix

r5 (
EE8ee8

rEE8ee8uE,e&^E8,e8u. ~11!

Assuming that all expectation values of random variables
represented in terms of quantum averages, we can write

^A&C5^CuAuC& ~12!

or

^A&r5Tr rA. ~13!

Of particular interest are averages representing certain st
tical quantities associated only with the entities, i.e., of
form

^I ^ Ae&C5^CuI ^ AeuC&5Tr ereAe ~14!

or

^I ^ Ae&r5Tr r~ I ^ Ae!5Tr ereAe. ~15!

The reduced density matricesre are defined, respectively, b

re5Tr EuC&^Cu5 (
Eee8

CEe* CEe8ue&^e8u ~16!

or

re5Tr Er5 (
Eee8

rEEee8ue&^e8u. ~17!

In particular, forproduct states, i.e., those of the form
6-2
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QUANTUM MORPHOGENESIS: A VARIATION ON . . . PHYSICAL REVIEW E67, 051926 ~2003!
uC&5(
E,e

cEfeuE,e&5uc& ^ uf& ~18!

or

r5 (
EE8ee8

%EE8see8uE,e&^E8,e8u5% ^ s, ~19!

the reduced density matrices are, respectively,

re5Tr EuC&^Cu5uf&^fu ~20!

and

re5Tr Er5s. ~21!

In such a case we say that the entity is uncorrelated with
environment, i.e., probabilities of events associated with
entity are independent of all the events associated with
environment.

States of composite systems are of a product formif and
only if entities are uncorrelated with environments. Inter
tions of entities with environments destroy the product for
and introduce correlations.

Reduced density matrices corresponding to nontrivial c
relations satisfy the condition

re
2Þre. ~22!

Any density matrixr is Hermitian and positive. From th
spectral theorem it follows that there exists a basis such
r is diagonal. For example, any density matrix of an en
can be written in some basis as

re5(
e

peue&^eu. ~23!

Now consider a vector

uC&5(
e

ApeuCe& ^ ue&, ~24!

where uCe&PHE are any orthonormal vectors belonging
the Hilbert space of the environment andue& are the eigen-
vectors ofre. Then

Tr EuC&^Cu5(
e

peue&^eu. ~25!

In other words, for any density matrixre one can find a state
of the composite system guaranteeing that its reduced
sity matrix is identical tore. In what follows we shall there-
fore assume that a given initialre is a result of correlations
of the entity with the environment. Ifre

2Þre then the corre-
lations are nontrivial.
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IV. FEEDBACK WITH THE ENVIRONMENT

Typical systems discussed in the biophysics literature
volve nonlinearities given by nonpolynomial functionsf.
One often encounters Hill and other functions which are c
tinuous approximations to step functions. A simple on
dimensional reaction-diffusion model describing experime
on regeneration and transplantation in hydra involves non
earities with positive and negative powers@19#. The environ-
ment is here modeled by two densities describing concen
tion of activator and inhibitor producing cells. Essential
the model is the symmetry breaking of the two densities
fact accounting for the nonsymmetric development of hyd
More refined models@20# do not need externally impose
inhomogeneities but involve environments acting as ac
chemicals. The aim of complicated feedback behaviors is
account for the observed symmetry breaking of the deve
ment of hydra without a need of putting the nonsymmet
elements by hand.

A close quantum analog of biophysical dynamical sy
tems is a ‘‘general’’ nonlinear von Neumann equation~4!
@21,22#. If f is to represent a feedback, the nonlinear eff
should disappear if the entity is uncorrelated with the en
ronment. Assuming that the whole system is represented
state vectoruC&, the lack of correlations implies thatuC&
5uc& ^ uf& andre5uf&^fu. Such a reduced density matri
satisfiesre

25re. The condition ‘‘no correlations, no feed
back’’ is formally translated into

@H, f ~r!#5@H,r# if r25r. ~26!

Let us note that the above restriction means thatre
5uf&^fu satisfies an equation equivalent to

i uḟ&5Huf&. ~27!

The latter is a general linear Schro¨dinger equation. In the
absence of feedback the entity evolves according to the r
of quantum mechanics, an assumption that is rather gen
and weak.

This property has also another interpretation that is
tirely ‘‘classical.’’ Consider a system consisting ofN classi-
cal harmonic oscillators with frequenciesv1 , . . . ,vN . De-
note byH the diagonal matrix diag(v1 , . . . ,vN) and byuf&
a column vector with entriesfk5qk1 ipk . Then Eq.~27! is
equivalent to the system of classical equationsq̇k5vkpk ,
ṗk52vkqk . As a consequence, the description we prop
may be extended even to fully classical systems modeled
ensembles of oscillators evolving linearly and independen
in the absence of a feedback.

Now, what are the restrictions imposed onf by Eq. ~26!?
As we have said before, a general density matrix has a f
re5(epeue&^eu, where pe are probabilities. The spectra
theorem implies that

f ~re!5(
e

f ~pe!ue&^eu. ~28!
6-3
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The conditionre
25re implies thatpe

25pe whose solutions
are 0 and 1. Therefore Eq.~26! is satisfied by anyf that
fulfills f (0)50 andf (1)51. In practical computations, on
can relax Eq.~26! by requiring only

@H, f ~r!#;@H,r# if r25r, ~29!

since having Eq.~29! one can always reparametrize the tim
variablet so that Eq.~26! is satisfied. The polynomial men
tioned in the Introduction belongs to this category.

Equation ~4! possesses a number of interesting gene
properties. For example, the quantities

h5Tr H f ~r!, ~30!

cn5Tr ~rn!, ~31!

for all naturaln, are time independent.h is the Hamiltonian
function for the dynamics and, hence, plays the role of
average energy of the entity~the feedback energy included!.
An analogous situation occurs in nonextensive statis
whereh has an interpretation of internal energy@22,36#. A
system with conservedh is closed.

Conservation ofcn implies that eigenvalues ofr are con-
served. The latter property means that there are certain
tures of the system that occur with time independent pr
abilities. However, and this is very important, the featu
themselves change in time in a way that is rather unusua
physical systems and has many analogies in evolution
biological systems.

V. SOLITON MORPHOGENESIS

There exists a class of solutions of Eq.~4! which exhibits
a kind of a three-regime switching effect@23–25#: For times
2`,t!t1 the dynamics looks as if there was not feedba
then in the switching regimet1,t,t2 a ‘‘sudden’’ transition
occurs, driving the system into anewstate that for timest2
!t,` evolves again as if there was no feedback. Of cou
the feedback is present for all times, but is ‘‘visible’’ on
during the switching period. Formally, the effect is ve
similar to scattering between two asymptotically linear ev
lutions ~‘‘self-scattering’’!. One can additionally complicat
the dynamics by introducing an external element that ma
the form of the feedback time dependent. We shall illustr
the effect on explicit examples.

The general equation~4! belongs to the family of equa
tions integrable by means of soliton methods. One beg
with its Lax representation

zl^cu5^cu~r2lH !, ~32!

2 i ^ċu5
1

l
^cu f ~r!. ~33!

The construction requires two additional Lax pairs

zn^xu5^xu~r2nH !, ~34!
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2 i ^ẋu5
1

n
^xu f ~r!, ~35!

zmuw&5~r2mH !uw&, ~36!

i uẇ&5
1

m
f ~r!uw&. ~37!

The method of solving Eq.~4! is based on the following
theorem establishing the Darboux covariance of the Lax p
~32!, ~33! @25#.

Theorem.Assume that̂ cu, ^xu, and uw& are solutions of
Eqs.~32!, ~33!, and~34!–~37! and ^c1u, r1 are defined by

^c1u5^cuS 11
n2m

m2l
PD , ~38!

r15S 11
m2n

n
PD rS 11

n2m

m
PD , ~39!

P5
uw&^xu
^xuw&

. ~40!

Then

zl^c1u5^c1u~r12lH !, ~41!

2 i ^ċ1u5
1

l
^c1u f ~r1!, ~42!

i ṙ15@H, f ~r1!#. ~43!

Let us note that the theorem is valid even for non-Hermit
H, i.e., for open systems. However, in the present paper
restrict the analysis to closed~conservative! systems charac
terized by self-adjointH. Systems whose average populati
does not change belong to this class.

One of the strategies of finding the ‘‘switching solutions
is the following. One begins with a seed solutionr such that
the operator

Daª f ~r!2ar, ~44!

where@a,H#5@a,r#50, satisfies@Da ,H#50 andDa is not
a multiple of the identity. Now we can write

i ṙ5@H, f ~r!#5a@H,r# ~45!

and

r~ t !5e2 iaHtr~0!eiaHt. ~46!

Taking the Lax pairs withm5 n̄ and repeating the construc
tion from Refs.@23,24#, we get
6-4
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QUANTUM MORPHOGENESIS: A VARIATION ON . . . PHYSICAL REVIEW E67, 051926 ~2003!
r1~ t !5e2 iaHt$r~0!1~ n̄2n!Fa~ t !21e2 iDat/ n̄

3@ ux~0!&^x~0!u,H#eiDat/n%eiaHt, ~47!

where

Fa~ t !5^x~0!uexpS i
n̄2n

unu2
Dat D ux~0!&

and^x(0)u is an initial condition for the solution of the La
pair.

VI. ‘‘SUDDEN’’ MUTATION OF POPULATION

In our first example we consider the quadratic nonline
ity f (r)5(12h)r1hr2. The parameterh controls the
strength of the feedback. However, for anyh and any density
matrix satisfyingr25r we find f (r)5r and the feedback
vanishes. This is consistent with our assumption thatr25r
characterizes systems not interacting with an environm
We take the HamiltonianH5(n50

` nun&^nu which may rep-
resent a system whose energy is proportional to the num
of its elements. Solutions of the von Neumann equation
in general, infinite dimensional, but in order to illustrate t
morphogenesis we restrict the analysis to a finite dimens
The lowest dimension where the effect occurs is 3. The
fore, we select a subspace spanned by three subsequen
tors uk&, uk11&, and uk12&. We will discuss a family, pa-
rametrized by aPR, of self-switching solutions r t

5(m,n50
2 rmnuk1m&^k1nu of Eq. ~4!. The solution is com-

pletely characterized by the matrix of time-dependent co
ficientsrmn . Here we only give the final result and postpo
a detailed derivation to Sec. VIII where we analyze a gen
alization involving a greater number of ‘‘different species
The reader may check by a straightforward substitution
the matrix

S r00 r01 r02

r10 r11 r12

r20 r21 r22

D 5
1

151A5 S 5 j~ t ! z~ t !

j̄~ t ! 51A5 j~ t !

z̄~ t ! j̄~ t ! 5
D
~48!

with

j~ t !5
~213i 2A5i !A31A5a

A3~egt1a2e2gt!
eiv0t,

z~ t !52
9e2gt1~114A5i !a2

3~e2gt1a2!
e2iv0t

is indeed a solution of the von Neumann equatio
The parameters arev0512(51A5)h/(151A5), g52h/
(151A5).

There exists a critical valueh05(151A5)/(51A5) cor-
responding tov050. Using the explicit position dependenc
of the eigenstates of the harmonic oscillator Hamiltonian
05192
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can make a plot illustrating the time dependence of the pr
ability densitypt,x in position space as a function of time an
h.

The dynamics we encounter in this example is particula
suggestive forh5h0 ~Fig. 1! and resembles a mutation o
the statistical ensemble described byr. The corresponding
probability appears static for, roughly,2`,t,240 and
then also for 40,t,`. Switching is ‘‘suddenly’’ triggered in
a neighborhood oft50. Figure 2 shows the evolution of th
probability density at the originpt,0 as a function of time for

FIG. 1. Probability densitypt,x5^xur tux& for the critical value
h05(15151/2)/(5151/2) as a function of time andx for 240,t
,40 ~in arbitrary units!. The three regimes are clearly visible. Th
probability interpolates between asymptotic probabilities that
constant in time. The visible switching~morphogenesis! begins
aroundt5230 and takes approximately 30 units of time. For la
times the probability density becomes indistinguishable from
new asymptotic state.

FIG. 2. Probability densitypt,0 at x50 as a function of time and
h for h0<h<2.45. For h.h0 the switching aroundt50 takes
place between two different asymptotic oscillating probability de
sities. The switching is absent only forh50 ~not shown! where the
dynamics is linear.
6-5
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different values ofh. For hÞh0 the probability density is an
oscillating function of time, but in the neighborhood oft
50 one observes the ‘‘mutation’’ that occurs for anyhÞ0,
the longer the transition period, the smallerh. Duration of
the switching process is of the order 1/h. For h50 the dy-
namics is linear~no feedback! and there is no switching. Th
example shows that there occurs a kind of uncertainty r
tion between the strength of the feedback and duration of
switching: The smaller the feedback, the longer the swit
ing period.

Let us note that the probability density shown in Fig.
has this particular shape since we have used the posi
space wave functions characteristic of a quantum o
dimensional harmonic oscillator~a Gaussian times Hermit
polynomials!. Had we chosen any other system that is is
pectral to a one-dimensional harmonic oscillator~or any sys-
tem with equally spaced spectrum, say, a three-dimensi
harmonic oscillator! we would have obtained a differen
shape of the probability density. Although different choic
of H imply different differential equations, their commo
feature is the effect of ‘‘mutation.’’

VII. COMPOSITE ENTITIES: BIRTH AND DEATH
OF AN ORGANISM

In this example we consider anorganism, that is, a com-
posite entity undergoing the feedback process as a whol
simple model consists of a two-qubit system described by
Hamiltonian

H5H1^ 111^ H2 . ~49!

The Hamiltonian does not contain an interaction term. Ho
ever, the two subentities forming the ‘‘organism’’ do n
evolve independently. They are coupled to each ot
through the feedback with the environment, i.e., through
nonlinearity. As we shall see, they become asymptotic
uncoulped att→6`. In a ‘‘distant past’’ the system consist
of uncorrelated subentities that, after a period of certain jo
activity, become again uncorrelated in the future. An analo
with ‘‘birth’’ and ‘‘death’’ is striking, and justifies the name
‘‘organism.’’

To make the example concrete, assume that
05192
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H52sx^ 111^ sz . ~50!

We will start with the non-normalized density matrix

r~0!5
1

2 S 51A7 0 0 0

0 52A7 0 0

0 0 51A15 0

0 0 0 52A15

D ,

~51!

which is written in such a basis that

H5S 1 2 0 0

2 1 0 0

0 0 21 2

0 0 2 21

D . ~52!

The density matrix

r~ t !5exp@25iHt #r~0!exp@5iHt # ~53!

is a solution of Eq.~4! with f (r)5r2. Such ar(t) describes
simultaneously the dynamics of two noninteracting syste
satisfying the linear von Neumann equation

i ṙ55@2sx^ 111^ sz ,r#. ~54!

To understand why this happens, it is sufficient to note t
the solution satisfies

@H,r2#5@H,5r#5@5H,r#. ~55!

The environment does not trigger in this solution any switc
ing, but only makes its evolution five times faster than in t
absence of the feedback. The Darboux transformation, w
applied tor(t), produces~for more details, cf. Ref.@23#! the
solution

r1~ t !5exp@25iHt #r int~ t !exp@5iHt #, ~56!

where
r int~ t !

5
1

2 1
52A7 tanh 2t 0

213i 23A72A152 iA105

8 cosh 2t

27i 13A723A151 iA105

8 cosh 2t

0 51A7 tanh 2t
15i 1A72A152 iA105

8 cosh 2t

A71A15

2 cosh 2t

13i 23A72A151 iA105

8 cosh 2t

215i 1A72A151 iA105

8 cosh 2t
51A15 tanh 2t 0

7i 13A723A152 iA105

8 cosh 2t

A71A15

2 cosh 2t
0 52A15 tanh 2t

2 .

~57!
6-6
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Now the switching between the two asymptotic evolutions
triggered in the neighborhood oft50.

If we look at the subentities forming the organism, w
notice that they do not evolve independently. The easiest
of seeing this is to compute the reduced density matrice
the two subentities. Here we write explicitly the eigenvalu
of the reduced density matrices. Both subsystems are
dimensional, so there are two eigenvalues for each redu
density matrix. They read

p6~1!5
1

2
6

A152A7

20
tanh 2t ~particle 1!, ~58!

p6~2!5
1

2
6
A2612A105

40 cosh 2t
~particle 2!. ~59!

The asymptotics are

r int~2`!5
1

2 S 52A7 0 0 0

0 51A7 0 0

0 0 52A15 0

0 0 0 51A15

D ,

~60!

r int~1`!5
1

2 S 51A7 0 0 0

0 52A7 0 0

0 0 51A15 0

0 0 0 52A15

D
5r~0!, ~61!

and therefore the dynamics represents asymptotically
noninteracting subentities. It is also interesting that the1`
asymptotics isr1(t)'r(t). At large times an ‘‘organism’’
that ‘‘dies’’ becomes practically indistinguishable from th
one that never ‘‘lived.’’

The ‘‘life’’ of the organism is the period of time when th
two subentities exhibit certain joint activity. Computing th
von Neumann entropies of reduced density matrices of
two subentities, we can introduce a quantitative measur
this activity. The entropies of the two particles are shown
Fig. 3. The organism lives several units of time. Similar a
the scales of time when the off-diagonal matrix elements
r int(t) become non-negligible. It should be stressed that
entropy characterizing the entire organism is time indep
dent @since eigenvalues of solutions of Eq.~4! are constants
of motion for all f ].

Although it is clear that the ‘‘organism’’ behaves durin
the evolution as an indivisible entity, one should not confu
this indivisibility with the so-called nonseparability dis
cussed in quantum information theory. The organism we c
sider in the example is a two-qubit system and therefore
can check the separability ofr1(t) by means of the Peres
Horodecki partial transposition criterion@26,27#: A two qubit
density matrixr is separable if and only if its partial trans
position is positive. It turns out that partial transposition
05192
s
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ed
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e
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e
f
e
-

e

n-
e

f

r1(t) is positive for anyt and, hence,r1(t) is in this sense
separable~has ‘‘zero entanglement’’!. It is well known, how-
ever, that ‘‘zero entanglement’’ does not mean ‘‘no quantu
correlations’’ in the system. The so called three-parti
Greenberger-Horne-Zeilinger state@28# is fully entangled at
the three-particle level in spite of the fact that all its tw
particle subsystems are described by separable density
trices.

VIII. MODEL WITH SEVERAL SPECIES

The models we have considered so far corresponded
Hilbert space with basis vectorsun&. The only characteriza-
tion of a state was in terms of the quantum numbern that
could be regarded as the number of elements of a gi
population. Now we want to extend the description to t
situation where we have a population consisting of seve
species characterized by numbersn1 , . . . ,nN . The basis
vectors are

un&5un1 , . . . ,nN&5un1& ^ •••^ unN& ~62!

and the Hamiltonian

H5(
nj

~n11•••1nN!un1 , . . . ,nN&^n1 , . . . ,nNu ~63!

5(
n

Enun&^nu. ~64!

The Hamiltonian has an equally spaced spectrum and is
mally very similar to those we have encountered in the p
vious sections. The difference is that now the energy eig
states are highly degenerated, a property that is very us
from the perspective of constructing multiparameter a
higher-dimensional self-switching solutions.

For simplicity consider two species (N52), the quadratic
nonlinearity

FIG. 3. Life and death of the two-qubit organism: the von Ne
mann entropies of particles 1~solid curve! and 2 ~dashed curve!.
The times where the particles are practically independent co
spond to the flat parts of the plots.
6-7
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f ~r!5~12h!r1hr2,

and take some three energy eigenvaluesEk , Ek1m , Ek12m .
For each energy takel 11 vectors, which will be denoted b

u0 j&5uk2 j , j &, ~65!

u1 j&5uk1m2 j , j &, ~66!

u2 j&5uk12m2 j , j &, ~67!

j 50,1, . . . ,l<k. We start with the unnormalized densi
matrix

r~0!5(
j 50

l

r j~0!, ~68!

where

r j~0!5
a

2
~ u0 j&^0 j u1u2 j&^2 j u!

1
a1Aa214~b2m2!

2
u1 j&^1 j u2

Aa214b

2

3~ u2 j&^0 j u1u0 j&^2 j u!. ~69!

Positivity of r j (0) restricts the parameters as follows:
,4m2,a214b,a2. The operator

Da5r~0!22ar~0!5b Ĩ2m2(
j 50

l

u1 j&^1 j u ~70!

commutes withH. We denote byĨ andH̃ the restrictions of
the identity I and H to the 3(l 11)-dimensional subspac
spanned by vectors~65!–~67!. We will write H̃5( j 50

l H j ,
where

H j5 (
n50

2

~k1nm!unj&^nj u. ~71!

Consider the eigenvalue problem
05192
@r j~0!2 iH j #uw j&5zuw j&. ~72!

We find that the two solutions

uw j
(1)&52

2im1Aa214~b2m2!

A2Aa214b
u0 j&1

1

A2
u2 j&, ~73!

uw j
(2)&5u1 j& ~74!

correspond to the samej-independent eigenvalue

z5
a1Aa214~b2m2!

2
1~k1m!i , ~75!

and therefore

@r~0!2 iH #uw&5zuw&, ~76!

with the samez for any

uw&5(
j 50

l

~a j uw j
(1)&1b j uw j

(2)&). ~77!

The self-switching solution can thus be constructed
means ofuw& and reads

r1~ t !5e2 i [11h(a21)]Ht$r~0!12iF a~ t !21e2hDat

3@ uw&^wu,H#e2hDat%ei [11h(a21)]Ht, ~78!

with

Fa~ t !5^wuexp~22hDat !uw&5e22hbt(
j 50

l

~ ua j u2

1e2hm2tub j u2!5e22hbt~ uau21e2hm2tubu2!.

~79!

Probabilities analogous to Fig. 1 are found ifa and h are
tuned in a way that eliminates the oscillating pa
e2 i [11h(a21)]Ht, i.e., for h51/(12a). In this case
r1~ t !5r~0!12i ~ uau21e2m2t/(12a)ubu2!21 (
j , j 850

l

@~a j uw j
(1)&1b je

m2t/12auw j
(2)&)~ ā j 8^w j 8

(1)u1b̄ j 8e
m2t/(12a)^w j 8

(2)u!,H#.

~80!
The vectors

uF j~ t !&5a j uw j
(1)&1b je

m2t/(12a)uw j
(2)&5uf j~ t !& ^ u j &,

~81!

where
uf j~ t !&5
a j

A2
S 2

2im1Aa214~b2m2!

Aa214b
uk2 j &

1uk12m2 j & D 1b je
m2t/(12a)uk1m2 j &

~82!
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are orthogonal for differentj. DenotingH5H1^ I 1I ^ H2,
one can easily compute the reduced density matrix of
first species,

r1
I ~ t !5Tr 2r1~ t !5r I~0!12i ~ uau21e2m2t/(12a)ubu2!21

3F (
j 50

l

uf j~ t !&^f j~ t !u,H1G . ~83!

The entire information about the dynamics of the first spec
is encoded inr1

I (t). Changes of properties of the species a
given by the matrix elements

^nur1
I ~ t !un8&5^nur I~0!un8&12i ~n82n!

3

(
j 50

l

^nuf j~ t !&^f j~ t !un8&

uau21e2m2t/(12a)ubu2
. ~84!

An immediate conclusion from the above formula is that
n5n8 the expression is time independent. It follows that t
number of elements of the ensemble does not change du
the evolution. What changes are certain properties of
ensemble.

A. Example: kÄmÄ1, jÄ0,1, aÄ5, bÄÀ4

The two-species states in the subspace in question ar

u00&5u1,0&, ~85!

u10&5u2,0&, ~86!

u20&5u3,0&, ~87!

u01&5u0,1&, ~88!

u11&5u1,1&, ~89!

u21&5u2,1&. ~90!

The two-species initial seed density matrix is given by

r0~0!5
5

2
~ u1,0&^1,0u1u3,0&^3,0u!1

51A5

2
u2,0&^2,0u

2
3

2
~ u3,0&^1,0u1u1,0&^3,0u!, ~91!

r1~0!5
5

2
~ u0,1&^0,1u1u2,1&^2,1u!1

51A5

2
u1,1&^1,1u

2
3

2
~ u2,1&^0,1u1u0,1&^2,1u!, ~92!

r~0!5r0~0!1r1~0!. ~93!

Assume thata05a151/A2, b05et0/4, b15et1/4. Then
05192
e

s
e
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uf0~ t !&5
1

2 S 2
2i 1A5

3
u1&1u3& D 1e(t02t)/4u2&, ~94!

uf1~ t !&5
1

2 S 2
2i 1A5

3
u0&1u2& D 1e(t12t)/4u1&. ~95!

Writing the restriction ofH to the six-dimensional subspac
as

H̃5S 1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 3 0

0 0 0 0 0 3

D ~96!

we can represent the two-species density matrixr1 in the
form

r15S 5

2
1

22 iA5

3
j 2

3

2
11

22 iA5

3
z

21 iA5

3
jT

51A5

3
1 i jT

2
3

2
11

21 iA5

3
z 2 i j

5

2
1

D ,

~97!

where1 is the 232 unit matrix,T denotes transposition, an

j~ t !5
et/4

et/21et0/21et1/2 S et1/4 et0/4

et1/4 et0/4D , ~98!

z~ t !5
et/2

et/21et0/21et1/2 S 1 1

1 1D . ~99!

One can verify by a straightforward calculation th
(h52 1

4 )

i ṙ15
5

4
@H,r1#2

1

4
@H,r1

2#. ~100!

To illustrate the time variation of statistical quantities ass
ciated with the two-species system it is sufficient to visual
the behavior of matrix elements ofr1. There are only three
types of functions occurring inr1:

F~ t !5
et/2

et/21et0/21et1/2
, ~101!

F0~ t !5
e(t1t0)/4

et/21et0/21et1/2
, ~102!
6-9
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F1~ t !5
e(t1t1)/4

et/21et0/21et1/2
. ~103!

The two parameters,t0 and t1, control two types of three-
regime behaviors ofr1. The functionF is responsible for
asymptotic properties ofr1 ~via z). FunctionsF0 and F1
determine properties of the switching regime~via j). For
t0!t1 one findsF0(t)'0 for all t and the switching is con
trolled by F(t) and F1(t); the ‘‘moment’’ of switching is
shifted proportionally tot1. For t0@t1 one findsF1(t)'0
for all t and the switching is controlled byF(t) andF0(t);
th
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05192
the ‘‘moment’’ of switching does not depend ont1 and is
determined byt0. Therefore, the two types of switches a
characterized by vanishing of those matrix elements ofr1
which contain eitherF0 or F1.

The asymptotic behavior of the system is given by

F0~6`!5F1~6`!5F~2`!50, ~104!

F~1`!51. ~105!

The reduced density matrices of single species are
r1
I 51

5

2

22 iA5

3
F1 2

3

2
1

22 iA5

3
F 0

21 iA5

3
F1 51

A5

2

22 iA5

3
F01 iF 1 2

3

2
1

22 iA5

3
F

2
3

2
1

21 iA5

3
F

21 iA5

3
F02 iF 1 51

A5

2
iF 0

0 2
3

2
1

21 iA5

3
F 2 iF 0

5

2

2 , ~106!
ion-
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r1
II5S 151A5

2

22 iA5

3
F11 iF 0

21 iA5

3
F12 iF 0

151A5

2

D . ~107!

Of course, all the density matrices are not normalized so
averages must be computed according tôA&
5Tr Ar1 /Tr r1, etc. ~note that Trr1 is time independent!.

IX. MORPHOGENESIS OF COMPLEMENTARITY

According to the sufficiency of subsystem correlatio
~SSC! @30,31# a density matrixr is uniquely determined by
correlations between all the possible propositions associ
with a given system. Each matrix element of ar can be
given an interpretation in terms of probabilities associa
with some proposition. In the Hilbert space language
proposition is a projector, i.e., an operator with eigenvalue
and 0~logical ‘‘true’’ and ‘‘false’’ !. Propositions that can b
asked simultaneously are represented by commuting pro
tors. PropositionsP1 , P2, which do not commute, are re
lated by an uncertainty relation: The more is known ab
P1, the less is known aboutP2, and vice versa.

It is obvious that the above structures do not have to
associated with quantum systems. Just to give an exam
many psychological tests are based on questionnaires
involve the same question asked many times in different c
texts. The questions commute if the answer to a given qu
tion is always the same. However, in typical situations
at

ed

d
a
1

c-

t

e
le,
at

n-
s-
e

same question has different answers within a single quest
naire. An ideal questionnaire involves all the possible qu
tions asked in all the possible orders. In the Hilbert spa
formalism, where the questions are represented by pro
tors, an ideal questionnaire encodes all the possible corr
tions and thus, via the SSC theorem, is equivalent to a d
sity matrix.

It is also known that there exist simple examples of s
tems whose logic is non-Boolean, but which do not allow
Hilbert space formulation@29#. The density matrix language
will probably not suffice here and one has to admit a pos
bility of other state spaces and other nonlinear evolutio
The richness of available structures is immense.

Let us finally give examples of propositions whose av
ages~i.e., probabilities! change in time according to selecte
matrix elements of the self-switching solutions. The functi
F(t) shown in Fig. 4 is associated with the proposition

P5
1

2 S 1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0
D ~108!

corresponding to the first species as follows:

p~ t !5
Tr Pr1

I ~ t !

Tr r1
I ~ t !

5
1

4

91A518F~ t !/3

151A5
. ~109!
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QUANTUM MORPHOGENESIS: A VARIATION ON . . . PHYSICAL REVIEW E67, 051926 ~2003!
Herep(t) is the probability of the answer ‘‘true’’ associate
with P. Analogously,F1(t) shown at Fig. 5 is associate
with the proposition

P15
1

2 S 1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0
D ~110!

by means of

p1~ t !5
Tr P1r1

I ~ t !

Tr r1
I ~ t !

5
1

4

151A518F1~ t !/3

151A5
. ~111!

The evolution of the probabilities resembles the well kno
evolutions typically modeled by Hill functions@12# in the so
called sigmoidal response models@32–35,37#. Square devia-
tions associated with the two propositions satisfy the unc
tainty relation

FIG. 4. F(t) as a function oft and t1 for t05150.

FIG. 5. F1(t) as a function oft and t1 for t05150.
05192
r-

DPDP1>
1

2UTr @P,P1#r1
I ~ t !

Tr r1
I ~ t !

U
5UA5~et/21e(t1t0)/4!2~31A5!e(t1t1)/4

12~151A5!~et/21et0/21et1/2!
U .

~112!

For any fixedt0 , t1, the right-hand side of the inequalit
vanishes fort→2` and approachesA5/@12(151A5)# for
t→1`. Figure 6 shows this function fort150. The two
propositions that were not complementary in the past evo
into propositions satisfying an uncertainty relation.

In application to psychology, a density matrix may repr
sent an ideal questionnaire and, hence, a state of person
of a given individual. The morphogenesis we have discus
is a simple model of development of two complementa
concepts. The model is simplified and perhaps too
fetched. However, philosophically this is not very far fro
the approaches of Thom@1# and particularly of Zeeman@38#
in their catastrophe theory models of the brain. More int
esting in this context may be infinite dimensional cas
whose preliminary analysis in terms of Darboux transform
tions for arbitraryf (r) can be found in Ref.@25#.

X. DISCUSSION

The model we have described satisfies the assumpt
imposed by Thom on asystem of forms in evolution~Chap.
1.2.A of Ref.@1#!. The model is continuous and the morph
genesis is a result of soliton dynamics. In this respect,
construction is analogous to nonlinear sigmoidal respo
models used in biochemistry@37#. What makes our construc
tion essentially different from the models one finds in t
literature is the role of noncommutativity of the system
propositions.

FIG. 6. Morphogenesis of complementarity. The right-hand s
of the uncertainty relation for standard deviationsDP andDP1 as a
function of timet and the parametert0 (t150). PropositionsP and
P1 are the more complementary, the greater the value of this fu
tion.
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Noncommutative propositions are related by uncertai
principles and are typical of systems that cannot, without
essential destruction, be separated into independent p
The examples can be taken not only from quantum phys
but also from sociology~communities!, psychology~person-
alities!, or biology~organisms!. In all these cases the dynam
ics of a system consists of two parts: One generated by
ternal interactions, and the other corresponding to coupli
with environment. We have considered only the simpl
case where the internal dynamics is givena priori by a
Hamiltonian of a harmonic oscillator type, and different pa
of an organism~community, etc.! are coupled to each othe
only via the environment.

The coupling with environment leads to a feedback a
hence, nonlinear evolution. The systems we consider
conservative, but without difficulties can be generalized
explicitly time-dependent environments or non-Hermiti
Hamiltonians.

We model propositions by projectors on subspaces o
Hilbert space. States of the systems are represented by a
possible correlations between all the possible, even nonc
muting, propositions. The choice of the Hilbert space la
guage leads us therefore to a density matrix representatio
states, and the dynamics is given in terms of nonlinear
Neumann equations. The formalism allows to consider m
phogenesis of a completely new type, for example, a de
opment of complementary properties.

The class of solutions which has an interpretation in ter
of morphogenesis has features that do not crucially dep
on the form of the nonlinearity, but more on the very pre
ence of a feedback. The exact time development~say, dura-
e
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ity

y

-

ys
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tion! of morphogenesis does depend on initial conditions
the form of nonlinearity. However, the modifications do n
influence the asymptotics, which is the qualitative elemen
the dynamics. For example, an organism that was ‘‘born’’ h
to ‘‘die’’ but when and how will this occur depends on man
details that are qualitatively irrelevant.

Instead of conclusions, let us quote Thom’s final rema
from his early work on topological models in biology@39#.

‘‘Practically any morphology can be given such a dynam
cal interpretation, and the choice between possible mo
may be done, frequently, only by qualitative appreciation a
mathematical sense of elegance and economy. Here w
not deal with a scientific theory, but more precisely with
method. And this method does not lead to specific tec
niques, but, strictly speaking, toan art of models. What may
be, in that case, the ultimate motivation to build such mo
els? They satisfy, I believe, a very fundamental epistemolo
cal need . . . . Ifscientific progress is to be achieved by oth
means than pure chance and lucky guess, it relies necess
on a qualitative understandingof the process studied. Ou
dynamical schemes . . . provide us with a very power
tool to reconstruct the dynamical origin of any morpholog
cal process. They will help us, I hope, to a better understa
ing of the structure of many phenomena of animate and
animate nature, and also, I believe, of our own structure
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